



## **BATMAN Project**

Fernando Aguilar Lopez, Romain Billy, Daniel B. Müller



## Research questions for global model

NTNU

- What is the demand for LIBs at the global level for electric vehicles and for stationary storage?
- How much of the demand for stationary storage can be satisfied by second life batteries and how is their availability influenced by battery replacements?
- How does this affect the recycling potential of LIBs?



## NTNU

## Needs for storage & transport as drivers





# NTNU

## Expected LIB demand entering use





## **D** NTNU

## Stationary storage: The role of reuse



- In the short term:
  - Reuse rate can directly affect need for new batteries for stationary storage
  - New battery installations could in turn also have an effect on reuse due to their inertia
  - In the long term:
    - SLB availability exacerbates demand
    - The timing for this varies depending on the reuse scenarios



## **D** NTNU

## The role of lifetimes





## Recycled content for different chemistries

NTNU





# Recycled content for NCX and LFP scenarios with different lifetimes



- Lower end bands: Lifetime of 20 years, all direct recycling
- Upper end bands: Lifetime of 16 years, all direct recycling





## Nickel case study





# Carbon footprints on production pathways

NTNU



- Different pathways use different ore types and processing technologies
- 10x difference between the most environmentally friendly and the most carbon intensive pathways





## Thanks for your attention!





## Global carbon footprint of Aluminium in cars

How current trends in the passenger car market increase the demand for Aluminium and the need for a greener metal cycle

Romain Billy, NTNU

BATMAN Scenario Workshop 01.09.2021

## Global carbon footprint of Aluminium in cars

#### PROBLEMS

- New trends impact the Al cycle:
  - Lightweighting
  - Electrification
  - SUV penetration
  - Population and car ownership growth
- More focus on embedded emissions
- Risk of castings scrap surplus

#### **OPPORTUNITIES**

- Better EoL management:
  - Challenge the current alloy use
  - Alloy-sorting
  - Closed-loop battery recycling
- Cleaner primary Al production:
  - Reduce direct emissions
  - Higher energy efficiency
  - Greener electricity mix

#### POLICIES

- Problem shifting to material production is not addressed enough
- Al is mostly ignored in battery directives
- Al is used in both the battery and the rest of the car: need for car level policies
- Meaningful system-level methods and indicators to track progress are missing

#### **RESEARCH QUESTIONS**

- 1. What will be the increase in Al demand and associated carbon footprint up to 2050, under different scenarios? What are mitigation options?
- 2. Will these changes in demand lead to a secondary castings scrap surplus? Which measures could limit the consequences?
- 3. How could current and future policies ensure a sustainable Al use in transport?

## System Definition

#### Al Flows in Passenger cars - 2050 - Baseline





### **Model Parameters**

#### The model uses 8 independent parameters to build scenarios:

- 1. **Population** per world region
- 2. Car ownership per capita
- 3. **Powertrain** split (share of ICE, HV, PHEV, EV)
- 4. Segment split

(share of different marketing segments, proxy for the size of vehicles)

- 5. Average **aluminium content** per car (normalized value, independent of segment and powertrain to measure lightweighting)
- 6. Average car lifetime
- 7. Use of alloy sorting technology
- 8. Carbon footprint of primary and secondary production

## The combinations of all independent projections for parameters give a set of 11 664 scenarios.

## Sensitivity analysis of scrap surplus



## Sensitivity analysis of scrap surplus



#### Electrification scenario

- IEA Stated Policies
- IEA Sustainable Development
- High EV Penetration

Alloy sorting technologies and/or longer lifetimes are needed to reduce scrap surplus

## Sensitivity analysis of global Al carbon footprint



## Global carbon footprint of Al in cars (BAU)



### Can we mitigate the carbon footprint of Al production?









## Thank you! romain.billy@ntnu.no

| SINTEF | NTNU        | N C E | ))))<br>Hydro | Alcoa |
|--------|-------------|-------|---------------|-------|
| егамет | 🔶 FINNFJORD | Elkem | WACKER        | (BE)  |



F